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We propose a new measure of the communicability of a complex network, which is a broad generalization
of the concept of the shortest path. According to the new measure, most of the real-world networks display the
largest communicability between the most connected �popular� nodes of the network �assortative communica-
bility�. There are also several networks with the disassortative communicability, where the most “popular”
nodes communicate very poorly to each other. Using this information we classify a diverse set of real-world
complex systems into a small number of universality classes based on their structure-dynamic correlation. In
addition, the new communicability measure is able to distinguish finer structures of networks, such as com-
munities into which a network is divided. A community is unambiguously defined here as a set of nodes
displaying larger communicability among them than to the rest of the nodes in the network.
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I. INTRODUCTION

Complex networks represent interactions between pairs of
units in disparate physical, biological, technological, and so-
cial systems �1–4�. A focus of research in this field is the
search of good measures, global or local, that quantify
unique characteristics of the networks �5–7�. Most of the
measures currently in use are based on the shortest paths
connecting two units �nodes� of a network �5–7�. Their rel-
evance rests on the premise that communication between the
nodes takes place through the shortest paths �8–10�.

At a local scale, the shortest path is often used to identify
network communities �11,12� or to characterize the impor-
tance of the nodes in a network �13�. For instance, the
boundaries of a community are commonly defined �11� on
the basis of the influence of a node over the flow of infor-
mation between other nodes, assuming that this flow prima-
rily follows the shortest paths. At a global scale, the use of
many concepts like the average shortest path length �14�, the
degree-degree correlations �15�, and the degree distribution
�16� emphasizes the “communicability” through the shortest
paths. Communicability must be understood here as capable
of being easily communicated or transmitted in terms of pas-
sage or means of passage between the different nodes in a
network.

However, “information” can, in fact, spread along non-
shortest paths �14,17�. We can think, for instance, of gossip
spreading in a social network, where the information can
flow back and forward several times before reaching the final
destination. Consequently, concepts such as “small world-
ness” �18�, “assortativeness” �19�, or “scale-freeness” �16�
can miss important information on the network communica-
bility as well as on finer structures of the network depending
on it �20�.

Motivated by this consideration, we propose in Sec. II a
new definition of communicability in complex networks. The

definition takes nonshortest walks into account with appro-
priate weights. We then show in Sec. III that the definition is,
in fact, equivalent to thermal Green’s function on the net-
work. We argue in Sec. IV that the present definition of the
communicability indeed characterizes complex networks, us-
ing explicit examples. In Sec. V, we also show that our com-
municability is useful in identifying communities in complex
networks. In closing, we introduce a new measure that char-
acterizes the communicability in complex networks having
several added values, such as its physical significance and
utility in characterizing the structure-dynamics relationship,
classification of networks in universal classes, and the detec-
tion of community structure in complex networks.

II. COMMUNICABILITY IN COMPLEX NETWORKS

A. Definition

We consider networks represented by simple graphs G
= �V ,E�; that is, graphs having �V � =n nodes and �E � =m
links, without self-loops or multiple links between nodes. Let
A�G�=A be the adjacency matrix of the graph whose ele-
ments Aij are ones or zeroes if the corresponding nodes i and
j are adjacent or not, respectively. We call the eigenvalues of
the adjacency matrix in the nonincreasing order �1��2
� ¯ ��n, the spectrum of the graph �21�.

It is well known that the �p ,q� entry of the kth power of
the adjacency matrix, �Ak�pq, gives the number of walks of
length k starting at the node p and ending at the node q �21�.
A walk of length k is a sequence of �not necessarily different�
vertices �0 ,�1 , . . . ,�k−1 ,�k such that for each i=1,2 . . . ,k
there is a link from �i−1 to �i. Consequently, these walks
communicating two nodes in the network can revisit nodes
and links several times along the way, which is sometimes
called “backtracking walks.” In contrast, a path is a sequence
of different vertices.

The communicability between a pair of nodes in a net-
work is usually considered as the shortest path connecting
both nodes. We now propose a generalization of the commu-
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nicability by accounting not only for the shortest paths com-
municating the nodes p and q but also for all the other walks
that permit for a “particle” to travel from one to the other.

The theoretical justification for this consideration is two-
fold. First, it is known that communication between a pair of
nodes in a network does not always take place through the
shortest paths but it can follow nonshortest paths. The other
justification is that the shortest paths are not very sensitive
with respect to the appearance of structural bottlenecks in a
network. On the contrary, the number of walks is signifi-
cantly affected by the appearance of such structural changes
in a network.

Our strategy here is to make longer walks have lower
contributions to the communicability function than shorter
ones. If Ppq

�s� is the number of the shortest paths between the
nodes p and q having length s, and Wpq

�k� is the number of
walks connecting p and q of length k�s, we propose to
consider the quantity

Gpq =
1

s!
Ppq + �

k�s

1

k!
Wpq

�k�. �1�

While a shortest path represents only a single path that com-
municates both nodes, our approach considers all ways in
which we can reach the target node q starting our walk at the
node p. As some of these “detours” can be very long, the
summation is weighted in decreasing order of the length of
the walk.

Using the connection between the powers of the adja-
cency matrix and the number of walks in the network, we
obtain

Gpq = �
k=0

�
�Ak�pq

k!
= �eA�pq. �2�

This can be further rewritten in terms of the graph spectrum
as �22�

Gpq = �
j=1

n

� j�p�� j�q�e�j , �3�

where � j�p� is the pth element of the jth orthonormal eigen-
vector of the adjacency matrix associated with the eigen-
value � j �21�. We call Gpq the communicability between the
nodes p and q in the network.

B. Bounds

Intuitively, the communicability should be minimal be-
tween the end nodes of a linear chain. In fact, the communi-
cability between the end nodes of a chain vanishes as the
length of the chain is increased. The oscillation of one end
dies out before it reaches the other end. On the other hand, if
we consider a complete graph, where every node is con-
nected to all other nodes, the communicability between an
arbitrary pair of nodes diverges as the size of the graph is
increased. The oscillation is greatly amplified because of the
infinitely many walks between the nodes. Thus, the commu-
nicability between a pair of nodes in a network is bounded
between zero and infinity, which are obtained for the two end

nodes of an infinite linear chain and for a pair of nodes in an
infinite complete graph.

This intuition can be proved mathematically as follows. It
is known that the eigenvalues and eigenvectors of a linear
chain of n nodes Pn are given by the following expressions
�23�:

� j = 2 cos� j	

n + 1
� and � j�p� =	 2

n + 1
sin� pj	

n + 1
� .

�4�

Then the value of Gpq for the chain Pn is equal to

Gpq =
1

n + 1�
j
�cos

j	�p − q�
n + 1

− cos
j	�p + q�

n + 1
�


e2 cos � j	/�n+1�� . �5�

Let P� be a chain of infinite length. It is straightforward to
realize by simple substitution in Eq. �5� that G1,�=0 for the
end nodes p=1 and q=�.

It is easy to show that the communicability between a pair
of nodes in the complete graph Kn, where every pair of nodes
is connected to each other, diverges with the graph size. The
eigenvalues of Kn are n−1 and −1 with multiplicity N−1
�23�. Because the eigenvectors are orthonormalized, we can
represent them as the columns of an orthogonal matrix Q.
Then, by the properties of an orthogonal matrix we have that
QTQ=QQT=I. The second part of this expression means
that the product of any two rows of Q is equal to zero, which
can be written as � j=1

n � j�p�� j�q�=0.
Then, because �1=1 /	n�1¯1� is the normalized eigen-

vector associated to the eigenvalue n−1, the previous equal-
ity immediately implies that � j=2

n � j�p�� j�q�=−�1 /n�. We
hence obtain

Gpq =
en−1

n
+ e−1�

j=2

n

� j�p�� j�q� =
en−1

n
−

1

ne
=

1

ne
�en − 1� .

�6�

It is easy to see that Gpq→� as n→� for Kn.

III. COMMUNICABILITY AS THE GREEN’S FUNCTION
OF NETWORKS

We now argue that the communicability defined above is
actually the Green’s function of the network. For a given
network with the adjacency matrix A, imagine the following
system. We have a spring on each link of the network. We
somehow put the network of springs on a plane, adjusting the
natural length of the springs so that the system may be at rest
on the plane. Each node can oscillate in the direction perpen-
dicular to the plane. The pth node, when at height zp, feels
the force K�q�zp−zq�Apq, where K is the common spring
constant, because the pth node is connected by a spring to
the qth node only if Apq=1. We also add a special spring
connecting each node to the ground, creating a force
−2Kkpzp, where kp is the degree of the pth node, or the
number of links attached to the pth node. In other words, the
potential energy for the pth node is given by
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Up =
K

2 �
q

�zp − zq�2Apq − Kkpzp
2, �7�

and hence the total energy is given by

E = �
p

Up =
K

2 �
p,q

�zp − zq�2Apq − K�
p

kpzp
2, �8�

which after some algebraic manipulation is transformed to
the expression

E = − K�
p,q

zpApqzq. �9�

The partition function is given by

Z = �
all configurations

e−�E =
 exp��K�
p,q

zpApqzq��
q

dzq.

�10�

We can transform the partition function in terms of the nor-
mal modes. Suppose that we diagonalize the adjacency ma-
trix A in the form �qApq� j�q�=� j� j�p�. Then the partition
function �10� is transformed to

Z =
 exp��K�
j

� juj
2��

j

duj , �11�

where uj =�qzq� j�q�. The integration in Eq. �11� is now pos-
sible, being the product of Gaussian integrals.

Let us now calculate the correlation function, or the �ther-
mal� Green’s function

Gpq��� = �zpzq =
1

Z

 zpzq exp��K�

s,t
zsAstzt��

r

dzr.

�12�

After the same transformation above, we obtain

Gpq��� = �zpzq = �
j

� j�p�� j�q�e�K�j = �
k�s

�
�k

k!
Wpq

�k�.

�13�

This describes how much the qth node oscillates when we
shake the pth node.

In general, the Green’s function expresses how an impact
propagates from one place to another place. In this sense, Eq.
�13� is nothing but the Green’s function of the network. From
another point of view, we can consider particle diffusion on
the complex network. Then the Green’s function �13� de-
scribes how many particles end up at the qth node if we put
particles at the pth node.

We can make another connection of the communicability
to the Green’s function by considering a continuous-time
quantum walk on the network. Take a quantum-mechanical
wave function ���t� at time t. It obeys the Schrödinger equa-
tion �22�

i
d

dt
���t� = − A��t� , �14�

where we use the adjacency matrix as the negative Hamil-
tonian.

Assuming from now on that =1 we can write down the
solution of the time-dependent Schrödinger equation �14� in
the form ���t�=eiAt ���0�. The final state eiAt �q is a state of
the graph that results after time t from the initial state �q.
The particle that resided on the node q at time t=0 diffuses
for the time t because of the quantum dynamics. Then, we
can obtain the amplitude that the particle ends up at the node
p of the network by computing the product �p �eiAt �q. By
continuation from the real time t to the imaginary time,
we have the thermal Green’s function defined as Gpq
= �p �e�A �q, which is the communicability between nodes p
and q in the network as defined in this work. Consequently,
the communicability between nodes pand q in the network
represents the probability that a particle starting from the
node p ends up at the node q after wandering on the complex
network due to the thermal fluctuation. By regarding the
thermal fluctuation as some forms of random noise, we can
identify the particle as an information carrier in a society or
a needle in a drug-user network.

IV. STRUCTURE-DYNAMICS RELATIONSHIPS

In order to investigate the structure-dynamics relationship
in complex networks, we use the correlation between the
node degree and the communicability �the Green’s function�.
The node degree kp is one of the simplest topological char-
acteristics of a network defined as the number of links at-
tached to a node. The correlation can be observed in the form
of three-dimensional contours where kp and kq form the x
and y axes, and Gpq is plotted as the z axis. We then fit the
data points by using the weighted least square method, which
is implemented in the STATISTICA package. This method is
similar to the one proposed by McLain for drawing contours
from arbitrary data points �24�.

A. Structure characterization

A network can display a homogeneous distribution of the
nodes in a way that two arbitrary regions of the network
display similar organizational characteristics. Such a network
is characterized by the lack of highly interconnected regions
or clusters separated from one another by a few or nodes or
links, which are known as bottlenecks. In Fig. 1 �a� we illus-
trate a hypothetical network displaying structural homogene-
ity, where two different regions show similar topological
characteristics when magnified. In these networks a plot of a
property characterizing the local neighborhood around a
node should scale perfectly to another property characteriz-
ing the global topology of the network. In other words, what
you see locally is what you get globally. It is necessary to
comment here that the lack of structural bottlenecks in a
homogeneous network does not imply the lack of communi-
ties in such a network. Thus, we can observe communities of
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highly interconnected nodes which are well communicated
from one another by a few links.

On the other hand, there are networks formed by two or
more clusters of highly interconnected nodes separated by
bottlenecks. Consequently, we can find different regions in

the network which display very different topological charac-
teristics. For instance, one of them can be a cluster of nodes
very tightly connected and another can be formed by a
bottleneck connecting two small chunks of the network as
illustrated in Fig. 1 �b�. These networks are characterized by
a lack of scaling between a local and a global topological
characterization of the network; that is, what you see locally
is not what you get globally.

B. Quantitative determination of network homogeneity

In order to determine whether a network is homogeneous
we start by characterizing the neighborhood of a node by
means of the subgraph centrality �25�. The subgraph central-
ity is defined as �25�

SC�i� = �
j=1

N

�� j�i��2e�j . �15�

Then, expressing the exponential in terms of hyperbolic
functions we can express the subgraph centrality as the sum
of two terms characterizing the odd and even contributions
�26�

SC�i� = SCodd�i� + SCeven�i�

= �
j=1

N

�� j�i��2 sinh�� j� + �
j=1

N

�� j�i��2 cosh�� j� . �16�

It is straightforward to realize that we can write odd sub-
graph centrality in the following form:

SCodd�i� = ��1�i��2 sinh��1� + �
j=2

N

�� j�i��2 sinh�� j� , �17�

where �1 and �1 are the principal �Perron-Frobenius� eigen-
value and eigenvector of the network, respectively. This ex-
pression can be represented in a logarithmic scale in the fol-
lowing form �through the whole paper we will use base-10
logarithms designated as log=log10�:

log �1�i� = 0.5 log�SCodd�i� − �
j=2

N

�� j�i��2 sinh�� j��
− 0.5 log�sinh��1�� . �18�

This expression can be represented as a straight line in a plot
of log �1�i� versus log���1�i��2 sinh��1��, with a slope of 0.5
and intercept of −0.5 log�sinh��1�� �27�.

Now, let us consider a homogeneous network defined in
the following way. A network is considered to be homoge-
neous if every subset S of nodes �S�50% of the nodes� has
a neighborhood that is larger than some “expansion factor” �
multiplied by the number of nodes in S. A neighborhood of S
is the set of nodes which are linked to the nodes in S �28�.
Formally, for each vertex ��V �where V is the set of nodes
in the network�, the neighborhood of �, denoted as ���� is
defined as ����= �u�V � �u ,���E� �where E is the set of
links in the network�. Then, the neighborhood of a subset
S�V is defined as the union of the neighborhoods of the
nodes in S: ��S�=���S���� and the network has good ex-

Local property based on node i

G
lo
ba
lp
ro
pe
rty
ba
se
d
on
no
de

i

Local property based on node i

G
lo
ba
lp
ro
pe
rty
ba
se
d
on
no
de

i

(a)

(b)

FIG. 1. �Color online� Simple illustration of networks with ho-
mogeneous and nonhomogeneous structures as well as their typical
scaling between a local and a global property of nodes.
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pansion if ������ �S� ∀S�V �28�. This definition of net-
work homogeneity is in agreement with our intuitive idea
illustrated in Fig. 1�a�; that is, a network is homogeneous if
what you “see” locally is what you get globally. These ho-
mogeneous graphs are known in the literature as good ex-
panders.

It has been proven �28� that graphs with very large spec-
tral gap �1��2 are very good expanders. In this case it is
easy to see that �27,29�

��1�i��2 sinh��1� � �
j=2

N

�� j�i��2 sinh�� j� �19�

and
SCodd�i� � ��1�i��2 sinh��1� . �20�

Consequently, those networks displaying homogeneous char-
acteristics as defined by the good expansion character dis-

play a perfect spectral scaling between log �1�i� and
ln SCodd�i� �27�as follows:

log �1�i� = 0.5 log SCodd�i� − 0.5 log�sinh��1�� . �21�

In summary, if we obtain a perfect straight line when plot-
ting log �1�i� versus log���1�i��2 sinh��1��, with a slope of
0.5 and intercept of −0.5 log�sinh��1��, the network has good
expansion character and consequently, it is homogeneous. If
the plot displays a dispersion of points the corresponding
network is not homogeneous. These two cases correspond to
the hypothetical plots illustrated in Fig. 1. Then, the devia-
tion from the perfect straight line ��G� in the spectral scaling
plot can be considered as a quantitative measure of the ho-
mogeneity of a network. A perfectly homogeneous network
will have ��G�=0; the higher the value of ��G� the larger the
departure of the network from homogeneous properties �30�.

��G� =	 1

N
�
i=1

N

�log��1�i�� − †log�sinh��1��−0.5 + 0.5 log�SCodd�i��‡�2. �22�

C. Degree-communicability correlations

According to the degree-communicability pattern, net-
works can be classified in any of the following four theoreti-
cally possible classes: �a� nonhomogeneous networks with
assortative communicability, �b� nonhomogeneous networks
with disassortative communicability, �c� homogeneous net-
works with assortative communicability, and �d� homoge-
neous networks with disassortative communicability.

Disassortative communicability �DC� is the pattern in
which the largest communicability occurs between the most
connected nodes �hubs� and nodes of low degree. In DC the
communicability between hubs is very poor as well as
among nodes of low degree. Assortative communicability
�AC� is the characteristic of a network of communicating
according to an assortative pattern, in which the largest com-
municability takes place among the hubs and the lowest
communicability occurs between nodes of low degree.

We start by considering the first three possible types of
networks according to their degree-communicability pat-
terns, i.e., �a�, �b�, and �c�. First, we build three possible toy
network structures, which are shown in Fig. 2 together with
their �kp ,kq ,Gpq� plots for every pair of nodes �p ,q�. These
graphs are built for illustration and are neither the result of
an empirical search nor of a simulation. The node degree kp
denotes the number of the links attached to the node p.

In Fig. 2�a� we illustrate a hypothetical network formed
by two communities of nodes with high internal connectivity,
which are separated by very few nodes or links. This net-
work will display a nonhomogenous structure due to the ob-
vious presence of the node or link bottlenecks. In some situ-
ations, networks with bottlenecks can display AC. Two

typical examples are a network where most of the hubs are
located in one of the tightly connected clusters and a network
where the hubs are the bottlenecks. In such cases as the one
illustrated in Fig. 2�a� the networks will display nonhomoge-
neous structure with assortative communicability between
the nodes.

The contour plot in Fig. 2�b� might appear to be counter-
intuitive. In social networks terminology �13�, it is equiva-
lent to saying that the most popular people are poorly com-
municated among them. This situation emerges when there
are a couple of leaders, each of whom forms a community of
many followers. The communication between the communi-
ties can be bad, and hence there is poor communicability
between the leaders. This example represents a hypothetical
illustration of a nonhomogeneous network with disassorta-
tive communicability between nodes.

The third contour plot in Fig. 2 fits intuitive interpretation;
the communicability Gpq is high between pairs of hubs, or
nodes of high degree. AC can appear in very homogeneous
networks where the hubs can communicate to each other
without structural bottlenecks �see Fig. 2�c��.

Finally, we have to consider a fourth hypothetical type of
network, which has not been represented in Fig. 2. This class
corresponds to the homogeneous networks having disassor-
tative communicability between the nodes. By definition in a
homogeneous network like the ones considered here, i.e.,
good expansion networks, there are not communities of
highly interconnected nodes separated by few nodes or links
acting as structural bottlenecks. Consequently, all the hubs in
the network are well communicated to each other as they are
in the same cluster of highly interconnected nodes. As a re-
sult there will be a large hub-hub communicability, which in
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any case is expected to be larger than the communicability
between hubs and low-degree nodes. In summary, we con-
clude that it is not possible to build homogeneous networks
with disassortative communicability between nodes. More
work should be done in this direction, particularly for search-
ing for theoretical justification for this empirical observation.

D. Empirical analysis of real-world networks

In this work we study 50 real-world networks of different
sizes and types, e.g., informational, technological, social,
biological, and ecological �31�. Our empirical analysis of
these networks shows that there is 52%, 12%, 36%, and 0%
of networks in each of the four classes previously defined,
respectively �see Table I where we also give the values of
��G��. In Fig. 3 we show contour plots for some of these

real-world networks: �a� the airport network in the USA, �b�
the semantic network of the Roget’s thesaurus, �c� the food
web of Bridge Brook, �d� the direct transcription network
between genes of yeast �S. cereviciae�, �e� the social network
of injecting drug users �IDUs�, and �f� the social network of
people with HIV infection in Colorado Springs during the
period of 1985–1999 �31�.

The first two networks �Figs. 3�a� and 3�b�� clearly dis-
play AC. The USA airport network is characterized by the
lack of topological bottlenecks �27�. This structural homoge-
neity results in the high interhub communicability of class
�c� as in Fig. 2�a�. The Roget’s thesaurus network also dis-
plays AC despite the fact that it is formed by several clusters
separated by structural bottlenecks �27�. In this case, how-
ever, there is a preference of the hubs to be connected to
other hubs, and hence we have class �a� as in Fig. 2�b�.

The food web in Fig. 3�c� forms a homogeneous network
without large structural bottlenecks �32�. However, this net-
work shows very large preference of the hubs to be attached
to low-degree nodes. Consequently, most of the interhub
communication takes place by indirect routes decreasing the
interhub communicability.

The last three cases, Figs. 3�d�–3�f�, display some degrees
of DC of class �b� as in Fig. 2�c�; the largest communicabil-
ity takes place between a hub and a node of low degree.
They are highly clustered networks �27�, but this character-
istic alone is not able to explain their DC patterns. Networks
such as the protein-protein interaction network of yeast and
the transcription network of E. coli are also highly clustered
�4� but display AC characteristics; they have different clus-
ters but the hubs in each of them are directly connected to
each other as in Fig. 2�b�. Then, how can we have the DC
patterns? The network of injecting drug users �Fig. 3�e�� has
a core of tightly connected individuals that interchange
needles among them. This core is formed by several hubs,
i.e., individuals that share their needles with a large number
of other users. These hubs interchange their needles among
them giving rise to certain AC characteristics observed in the
contour plot of Fig. 3�e�. However, there are several other
groups in the network led by other individuals with a large
number of internal connections. These groups are almost iso-
lated and communicate among them only through very few
individuals. This gives rise to the DC characteristics ob-
served in Fig. 3�e�. In the case of the risk network of Colo-
rado Springs there is not a highly interconnected core �33�
and the network shows very clear DC characteristics.

V. COMMUNICABILITY AND NETWORK COMMUNITIES

We now present a method of analyzing the structure of a
complex network. More specifically, we show how we can
identify network communities by using the communicability,
or the Green’s function. Community identification has been
an active area of research in complex networks
�11,12,34–38�.

In order to make further analysis, we now use the spectral
decomposition of the Green’s function �3�. Imagine again
that the network has a spring on each link as was described
in Sec. III. Each eigenvector indicates a mode of oscillation

FIG. 2. Illustration of three different organizations of nodes in
networks and their communicability patterns. The contour plot rep-
resents the relative communicability between every pair of nodes as
a function of their degrees �kp ,kq�. �a� Superhomogeneous network
where the information can flow among hubs without passing
through structural bottlenecks. A superhomogeneous network dis-
plays the largest communicability between the most connected
nodes �gray nodes� and the lowest communicability between the
nodes of low degree �white nodes�, i.e., assortative communicabil-
ity. �b� Network formed by two �or more� clusters of highly inter-
connected nodes which have very few intercluster connections
�bottleneck�. In this case the hubs �gray nodes� of one cluster are
directly connected to the hubs of the other. Consequently, the com-
municability pattern is of the assortative �AC� type. �c� Network
with two �or more� clusters in which the “information” arising at
the hubs �gray nodes� of one cluster needs to travel through the
bottleneck to reach the hubs �gray nodes� of the other cluster. This
network displays an “atypical” disassortative communicability pat-
tern in which hubs are better communicated with nodes of low
degree and the interhub communicability is poor.
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of the entire network and its eigenvalue represents the weight
of the mode. It is known that the eigenvector of the largest
eigenvalue �1 has elements of the same sign. This means that
the most important mode is the oscillation where all nodes
move in the same direction at one time.

The second largest eigenvector �2 has both positive and
negative elements. Suppose that a network has two clusters
connected through a bottleneck but each cluster is closely
connected within. The second eigenvector represents the
mode of oscillation where the nodes of one cluster move
coherently in one direction and the nodes of the other cluster
move coherently in the opposite direction. Then the sign of
the product �2�p��2�q� tells us whether the nodes p and q are
in the same cluster or not.

The same analysis can be applied to the rest of the eigen-
values of the network. The third eigenvector �3, which is
orthonormal to the first two eigenvectors, have a different
pattern of signs, dividing the network into three different
blocks after appropriate arrangement of the nodes. These
three clusters are not necessarily independent of the two

clusters obtained by using the second largest eigenvector. For
instance, in a network formed by three clusters A-B-C, where
A and B are very large clusters and C is a small one, it is
possible that the second largest eigenvector divides the net-
work into the clusters A and B-C. In addition, the third larg-
est eigenvector divides the whole network into the three clus-
ters A, B, and C. In general, the second eigenvector divides
the graph into biants, the third divides it into triants, the
fourth into quadrants, and so forth, but these clusters are not
necessarily independent of each other.

According to this pattern of signs we have the following
decomposition of the communicability:

Gpq = �1�p��1�q�e�1 + �
j=2

n

� j
+�p�� j

+�q�e�j + �
j=2

n

� j
−�p�� j

−�q�e�j

+ �
j=2

n

� j
+�p�� j

−�q�e�j , �23�

where � j
+ and � j

− refer to the eigenvector components with

TABLE I. Real-world complex networks classified according to their structure-dynamics correlations.

Class Ia ��G� Class IIa ��G� Class IIIb ��G�

Roget 0.230 Drugs 1.390 ODLIS 1.55
10−5

SciMet 0.102 Zachary 0.066 Centrality 9.26
10−5

GDc 0.465 Trans-yeast 0.796 USAir97 9.04
10−5

Electronic1c 0.743 Protein3 1.200 Internet-97 1.18
10−3

Eletronic2 0.746 XMMS 1.218 Internet-98 9.90
10−4

Electronic3 1.030 ColoSpgs 0.802 Neurons 2.70
10−4

Abi 0.281 Ythan1 1.50
10−3

MySQL 1.666 Ythan2 2.92
10−3

Digitalc 0.323 St. Marks 2.90
10−3

VTKc 0.140 Bridge Brookc 9.00
10−3

Corporate 0.053 Benguela 6.30
10−3

Prisonc 0.228 El Verde 4.50
10−5

Geom 0.452 St. Martin 1.50
10−3

College 0.073 Little Rock 3.72
10−5

PIN-1 0.141 Coachella 7.18
10−5

PIN-2c 0.104 Skipwith 6.16
10−5

PIN-3 1.070 Reef Small 4.31
10−5

Canton 0.183 Shelf 6.75
10−5

Stony 0.219

Trans-E. coli 0.764

Trans-Urchins 0.430

Protein1 1.100

Protein2 0.504

Chesapeake 0.094

Scotch Broom 0.020

Grassland 0.518

aThe correlation coefficients are lower than 0.995 and the slope is significantly different from 0.5.
bThe correlation coefficients are larger than 0.9998 and the slope is exactly equal to 0.5.
cNetworks with some deviations from the perfect AC pattern. Class I: Nonhomogeneous networks with AC
pattern. Class II: Nonhomogeneous networks with DC pattern. Class III: Homogeneous networks with AC
pattern.
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positive and negative signs, respectively. The first three
terms on the right-hand side of Eq. �23� give positive contri-
butions and the last term makes a negative contribution to
the thermal Green’s function. According to the partitions
made by the pattern of signs of the eigenvectors in a graph,
two nodes have the same sign in an eigenvector if they can
be considered as being in the same partition of the network,

while those pairs having different signs correspond to nodes
in different partitions. Thus, the second and third terms of
Eq. �23� represent the intracluster communicability between
nodes in the network and the last term represents the inter-
cluster communicability between nodes. The last term must
be more appropriately called the intercluster separation be-
cause it reflects the poor communicability between clusters.
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FIG. 3. Communicability degree contour plots
for several real-world networks. The first two
plots are typical of networks with assortative
communicability �AC� and the network structures
correspond to cases like the ones illustrated in
Figs. 2�a� and 2�b�. The plot in �c� also corre-
sponds to AC but due to the large preference of
the hubs to be attached to low-degree nodes the
interhub communicability is reduced. The last
three cases correspond to typical disassortative
communicability �DC� patterns. The correspond-
ing networks have structures that match the to-
pology illustrated in Fig. 2�c�. �a� The airport net-
work in the USA in 1997. �b� The semantic
network of the Roget’s thesaurus. �c� The food
web of Bridge Brook. �d� The direct transcription
network between genes of yeast. �e� The social
network of injecting drug users. �f� The social
network of people with HIV infection in Colo-
rado Springs during the period of 1985–1999.
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However, we will abuse the language here to call it the in-
tercluster communicability for the sake of the homogeneity
of terms used.

The above consideration motivates us to define a quantity
�Gpq by subtracting the contribution of the largest eigen-
value �1 from Eq. �23�, or removing the background mode of
translational movement. Then the positive contributions to
the sum in �Gpq, indicating that the nodes p and q are in the
same cluster, represent the intracluster communicability. The
negative contributions, on the other hand, indicate that the
nodes p and q are in different clusters, and hence represent
the intercluster communicability as follows:

�Gpq�T� = �
j=2

intracluster

� j�p�� j�q�e��j + �
j=2

intercluster

� j�p�� j�q�e��j .

�24�

By focusing on the sign of �Gpq, we can unambiguously
define a community for a group of nodes. If �Gpq for a pair
of nodes p and q have a positive sign, they are in the same
community. If �Gpq for the two nodes have a negative sign
they are in different clusters.

As the intercuster communicability has negative sign, we
can rewrite Eq. �24� as follows:

�Gpq�T� = �
j=2

intracluster

� j�p�� j�q�e��j

− � �
j=2

intercluster

� j�p�� j�q�e��j� . �25�

Our current approach differs significantly from the spec-
tral clustering methods, which are based exclusively in the
signs of the components of a given eigenvector of the adja-
cency or Laplacian matrices �39�. Other variants of this
method have been proposed by using the eigenvectors of the
nonsymmetric “normal” matrix �39� or the eigenvectors of
the “modularity” matrix �40�. These methods are exclusively
based on the eigenvectors of the corresponding matrices
which induce clustering of connected nodes by partitioning
the underlying graph. However, in the current approach we
use a combination of eigenvalues and eigenvectors �see Eq.
�24�� to account for the communicability between every pair
of nodes �not only the connected ones�.

As we are considering every pair of nodes in the network
we can represent the network as a signed complete graph. A
signed complete graph is a graph in which every pair of
nodes is linked to each other and every link in the graph has
a positive or negative sign. Thus, it is straightforward to
realize that a community is a positive clique in the signed
complete graph. A positive clique is a subgraph in which
every pair of nodes is linked to each other and all links have
a positive sign. Then, a community can be formally defined
as the largest possible positive clique in the signed complete
graph. Consequently, the method of detecting communities
in a network is reduced to find these maximal positive
cliques.

Figure 4�b� is the signed complete graph for the network
in Fig. 4�a�. In Fig. 4�c� we illustrate the four positive cliques

extracted from this signed graph. The maximal positive
clique that can be formed by the nodes 1, 2, 3, 4, and 5 is the
5-clique, which represents a community formed by the five
nodes. However, the maximal positive cliques formed by the
nodes 5, 6, and 7 are a couple of 2-cliques forming the clus-
ters 3 and 4; there is not a positive 3-clique formed by these
nodes.

By representing the signs of the values of �Gpq in a ma-
trix, we obtain a signed matrix as in Fig. 4�d�. After appro-
priate rearrangement of the rows and columns of this matrix
we see that every community is represented by a square posi-

(a)

(b) (c)

(d)

(e)

FIG. 4. �a� Illustration of the process of identifying communities
in a simple network at the top of the figure. �b� A representation of
the signed complete graph for the network in �a�, where the black
lines indicate negative �Gpq and the gray fat ones indicate positive
�Gpq. �c� The four completely positive cliques existing in the net-
work. �d� Identification of the communities by grouping the positive
�gray� entries of the adjacency matrix. �e� Illustration of the differ-
ent communities in the network and their overlapping.
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tive submatrix. The communities found by applying this ap-
proach to the network in Fig. 4�a� are illustrated in Fig. 4�e�,
where we can see that the current method not only identifies
simple communities but also their overlapping. In addition,
the values of �Gpq �not the sign� can be used as a criterion of
the cohesiveness of a community. The larger the values of
�Gpq, the tighter the relation between the corresponding
members of this community.

As an example of the real-world network, we consider a
friendship network known as the Zachary karate club, which
has 34 members �nodes� with some friendship relations
�links�. The members of the club, after some entanglement,
were eventually fractioned into two groups, one formed by
the followers of the instructor and the other formed by the
followers of the administrator. The average communicability
for this network are �G=17.52 and ��G=−0.15, where
�¯ stands for the average over all pairs of nodes. No pair of
nodes has �Gpq=0; most of the pairs �87%� have −2
��Gpq�2, while the minimum is �Gpq=−20.69.

Strictly speaking, a community is formed by a set of
nodes with positive communicability among all of them.
However, it might happen that two communities display a
large number of nodes in common. Then, we can merge
these two communities into a single one. We consider these
two original communities as neighborhoods of the larger
community. As a threshold here we use a value of 70% of
overlapping between the nodes in two neighborhoods to con-
sider them in the same community. Using this approach we
identify unambiguously two communities. In Fig. 5, we plot
the values of �Gpq for every pair of nodes in the karate club
network. As can be seen in Fig. 5, the instructor �the node 1�
leads a group formed by the nodes represented at the bottom
left part of the plot. On the other hand, the administrator �the
node 34� is the leader of the other faction formed by the
nodes represented at the top right part of the plot.

As is suggested in Fig. 4�e�, the current approach permits
the identification of the overlapping between communities of
nodes pertaining to more than one group simultaneously. The
real-world communities characteristically display some de-
gree of overlapping to each other �37�. In the friendship net-
work of the Zachary karate club, we identify two large com-
munities, one formed by the followers of the instructor �the
node 1� and the other formed by the followers of the admin-
istrator �the node 34�. The nodes forming the instructor’s
faction �the red circles in Fig. 5� only form one community.
That is, these individuals are tightly communicated to each
other in one community lead by the instructor.

However, the followers of the administrator form a more
fractioned community. Not all followers of the administrator
communicate very well to each other. For instance, �G25,31
=−0.0096, �G25,9=−0.205, and �G26,9=−0.104. This gives
rise to several overlapped neighborhoods among these
groups of individuals as defined previously. For instance, in
Fig. 6 we illustrate two of these neighborhoods in the com-
munity of the administrator. The first, in clear gray, is formed
by all squared nodes except the nodes 9 and 31. The other
neighborhood, in dark gray, is formed by all nodes except the
nodes 25 and 26. The overlap between these two neighbor-
hoods is represented in an intermediate gray tone. It is
formed by those individuals who are simultaneously in both

neighborhoods. There is still another neighborhood, not rep-
resented in Fig. 6, which is formed by all nodes except the
nodes 9 and 25. In summary, our current approach identifies
clearly the two communities empirically detected in this so-
cial network. In addition, it is able to identify the finer struc-
ture of each of these communities, which in the case of the
community of administrator followers is formed by several
small groups or neighborhoods.

VI. DISCUSSION AND CONCLUSIONS

We have extended the concept of communicability in net-
works beyond the simple consideration of the shortest paths
connecting nodes. Conventional definitions account only for
the shortest paths as the communicability. The definition in-
troduced here takes longer walks into account. The number
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FIG. 5. �Color online� The community structure of the Zachary
karate club network. The two factions in which the network was
divided are illustrated in different shapes of the nodes �and color
online�. The matrix plot illustrates the values of �Gpq for every pair
of nodes �p ,q� in the network. A positive value of �Gpq �dark
contour� indicates that the pair of nodes is in the same community
and a negative value of �Gpq �clear contour� indicates that the pair
is in different communities. The nodes are ordered according to
their values of �Gpq in decreasing order.
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of walks is measured through the powers of the adjacency
matrix of the network. We define the communicability be-
tween two nodes by giving larger weights to the shorter
walks and smaller weights to the longer walks. The shortest
paths connecting two nodes always make the largest contri-
bution to the communicability, but longer walks, greater in
number, also have some contributions. Our definition permits
the analytical calculation of the communicability from graph
spectral theory as well as identification of this measure as the
thermal Green’s function of the network. In other words, the
communicability function expresses how an impact propa-
gates from one node to another in the network.

The use of our definition of network communicability has
several unique features. We can obtain information about
network structures at both global and local scales simulta-
neously, which has been identified as a promising route to
explore complex networks �41�. We have shown that this
information is critical to understanding the organization and
evolution of complex networks. First, we have used this
measure to investigate the structure-dynamic relationship in
real-world complex networks. By analyzing the degree-
communicability relations we have empirically discovered
the existence of three universality classes of complex net-
works: the homogeneous networks which always display as-
sortative communicability �AC� and the heterogeneous net-

works that can display either assortative or disassortative
�DC� communicability. In AC networks the most connected
nodes or hubs display the largest communicability among
them following the common intuition. Less intuitive is the
case of DC networks in which hubs are poorly communi-
cated among them.

Network communicability also permits an unambiguous
definition of a community in a network. A community is a set
of nodes in the network displaying the largest internal com-
municability; that is, a group of nodes that communicate
much better among them than with the rest of the nodes in
the network. This definition enables analytical identification
of communities in a network as has been illustrated here for
the Zachary karate club. An interesting feature of this
method is that it permits one to find overlapping communi-
ties in the network, which is closer to the real-life situation
than the definition of isolated communities. In this respect
there is a significant difference from the “classical” spectral
partitioning method, also known as spectral clustering meth-
ods. These methods use the eigenvectors of a graph’s adja-
cency or Laplacian matrix to build a geometric representa-
tion, which is then heuristically partitioned �39�. The current
approach, however, uses a combination of all eigenvalues
and eigenvectors to obtain information about the communi-
cability between nodes and on this basis to find the commu-
nities or partitions of the graph. Because there are several
spectral clustering methods, a comparison of the current ap-
proach with those methods is out the scope of the current
work.

In closing, network communicability as defined here is a
promising measure for analyzing topological and dynamical
properties of graphs and networks. The information dis-
played by this graph theoretical measure is not duplicated by
other existing measures and its facility of calculation will
permit its application in many different areas of research
using graphs and networks.
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